Lesson Outline

LESSON 3

Magnetism

- **A.** What is a magnet?
 - 1. Any object that attracts iron is a(n) ______.
 - 2. Iron is an example of a(n) ______ because a magnet attracts iron.
- **B.** Magnetic Fields and Magnetic Forces
 - 1. A magnet is surrounded by an invisible ______.
 - 2. A push or pull that a magnet applies on a magnetic material is

a(n) _______

- **a.** This force exists even if the objects are not ______.
- **b.** Magnetic field lines start on the ______ pole of a magnet and end at the _____ pole.
- 3. Magnetic poles apply _______.
 - a. Two poles of the same type ______ each other.
 - **b.** A north pole and a south pole ______ each other.
- 4. Molten iron and nickel in Earth's ______ cause Earth to act like a giant magnet.
 - a. Earth has a magnetic north pole and a magnetic ______.
 - **b.** Earth's magnetic south pole is near Earth's geographic _____ Pole.

C. Magnets

- 1. Atoms are grouped in _______ in some materials.
 - a. A magnetic domain is a region in a magnetic material in which the _____ of the atoms all point in the same direction.
 - **b.** The individual magnetic fields combine to form _____ magnetic field.
- 2. In nonmagnetic materials, the random magnetic fields cancel out the magnetic _____ of each other.
- 3. Some magnetic materials, such as iron and ______ are grouped in ______.
 - a. Not all magnetic materials are ______.

Lesso	on Outline continued		
	b. If the magnetic domains point in the same direction, the material becomes		
	a(n)		
4.	Magnetic materials are known as either soft magnetic materials		
	or		
	a. Soft magnetic materials form magnets.		
	b. Hard magnetic materials form magnets.		
D. Cor	nbining Electricity and Magnetism		
1. The relationship between electricity and magnetism is			
	called		
2.	Electric current is produced when a(n) and a wire		
	move past each other.		
3.	An electromagnet is a type of temporary magnet produced when a current-carrying		
	wire is wrapped around a(n) core.		
4.	The magnetic field of an electromagnet can be turned on and off by turning the		
	on and off.		
12 0 201	The strength of an electromagnet can be controlled by controlling the amount of		
	in the coil, or by the number of		
	in the coil.		

Name ______ Date _____ Class ____

Name		Date	Class
School to Hom	ie		LESSON 3
Magnetism			
Directions: Use your tex	tbook to respond to each	1 statement.	
1. Many common	objects use mag	nets.	
Define magnet as	nd list three metals	that are attracted to magne	ets.
-		, but all magnets have t	
3. Earth is a mag nickel and iro		c field is generated by c	urrents of molten
Apply this infor	mation to explain	how a compass works.	
	re magnets. Oth le up of nonmag	ers are made up of mag netic materials.	netic materials; still
Describe the arr materials.	angement of atom	s in magnets, magnetic mat	erials, and nonmagnetic

Key Concept Builder

LESSON 3

Magnetism

Key Concept What causes a magnetic force?

Directions: Answer each question on the lines provided.

- 1. What is a magnetic force?
- 2. How does distance affect the strength of the magnetic force?
- **3.** What is a magnetic pole?
- **4.** What are the two types of magnetic poles?
- **5.** How do magnetic poles interact?

Directions: Draw arrows between each set of bar magnets to show whether the magnets will attract one another $(\rightarrow \leftarrow)$ or repel one another $(\leftarrow \rightarrow)$. S represents the south pole, and N represents the north pole.

6.

S	Ν

- N
- Ν
- N

YOUT	Vame	Date	Class
------	------	------	-------

Key Concept B	uilder
---------------	--------

LESSON 3

Magnetism

Key Concept How are magnets and magnetic domains related?

Directions: Use the diagram to answer each question on the lines provided.

Figure A

Figure B

Figure C

- 1. What do the smallest circles represent in each of the three diagrams?
- **2.** Which figure shows a nonmagnetic material? Use the concept of magnetic domains to explain how you reached your answer.

3. Which figure shows a magnetic material? Use the concept of magnetic domains to explain how you reached your answer.

4. Which figure shows a magnet? Use the concept of magnetic domains to explain how you reached your answer.